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Abstract. A classification of all possible realizations of the Galilei, Galilei-similitude and
Schr̈odinger Lie algebras in three-dimensional spacetime in terms of vector fields under the action
of the group of local diffeomorphisms of the spaceR3×C is presented. Using this result a variety
of second-order evolution equations invariant under the corresponding groups are constructed and
their physical significance is discussed.

1. Introduction

A useful tool for treating nonlinear differential equations is the symmetry method. This
includes, among others, generating a family of non-trivial exact solutions from a known
(trivial) one, reducing the order for ordinary differential equations (ODEs) and the number
of independent variables for partial-differential equations (PDEs) and classifying equations
into equivalence classes and hence deriving the necessary conditions for apparently different
equations to be transformable amongst each other. This method has been used to obtain exact
particular solutions of a large number of physically important nonlinear partial differential
equations. On the other hand, if we know the symmetry group of an equation we can construct
other equations which are more general and left invariant by the same group. The great
advantage of this inverse approach is that the symmetry reduction technique can be used to
find some exact solutions of a large class of equations which are by construction invariant.

In spite of the abundance of work pursuing the direct method (determining the symmetry
group and then finding particular solutions of the reduced equations), there appear only a few
papers devoted to the alternative problem of constructing the most general equations invariant
under a given symmetry group [1–5]. Surprisingly, complete classification of invariant
equations for many of the groups of physical importance with arbitrary spatial dimensions
is unknown. Although in [5] the most general second-order invariant equations for the rotation
groupO(n) as well as the Euclidean, Poincaré and conformal groups are constructed, this
approach seems cumbersome and less systematic. We mention that the higher-dimensional
invariant equations for the above groups are also unknown. A more systematic way of
constructing general equations invariant under a group is adopted in [1, 3]. An extension
of the results of [1] to a higher-dimensional case was carried out in [2].

Recently, there has been an explosion of papers devoted to the search for modified versions
of quantum mechanics in which the superposition principle is no longer valid and the evolution
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equation is no longer linear. For instance, Sabatier [6] introduced a set of nonlinear equations
of Schr̈odinger type. In particular, he studied two classes of modular equations depending
on a real parameter. Later, Auberson and Sabatier [7] showed that these equations can be
linearized by scaling variables. It turned out that only a subclass of this set, i.e. the so-called
modular class for the free particle case, shares the property of being norm conserving and
being homogeneous, time reversal invariant with the linear Schrödinger equation. Another
remarkable fact is that, besides being Galilei invariant as mentioned in [7], they have the same
invariance group as the linear Schrödinger equation. Meanwhile, Doebner and Goldin [8]
proposed an eight-parameter family of homogeneous nonlinear Schrödinger-type equations
onR3, including a diffusion term, called the DG equations from fundamental considerations
of local symmetry in quantum mechanics. They possess nice symmetry properties; for certain
choices of the five parameters they are invariant under a central extension of the Galilei
group. A study of symmetries of the free DG equations in terms of gauge invariants and the
integrability of certain subfamilies associated with their symmetries has been reviewed in [9].
As a matter of fact, DG equations include numerous modifications of the linear Schrödinger
equation. For example, the equations studied in [6] are special cases of the DG equations. One
observation that occurs in equations proposed as a possible modification of the Schrödinger
equation from physical considerations only is that they generally do not obey the Galilean
principle. On the other hand, Galilei invariant equations are usually consistent with dilation
and conformal invariance. That is why a group-theoretical justification for this modification
is of vital importance. From this point of view the construction of all nonlinear evolution
type equations preserving Schrödinger invariance will play an essential role in modifying the
Schr̈odinger equation. Let us emphasize that on physical grounds the property of homogeneity
is an important ingredient in nonlinear Schrödinger equations. Indeed, Weinberg [10] proposed
tests of quantum mechanics by modifying the Schrödinger equation by nonlinear terms and
then imposing a complex homogeneity condition. One can formulate such a theory by requiring
that the fundamental equations be invariant under a group isomorphic to the symmetry group
of the linear Schr̈odinger equation, but omitting the superposition principle.

It is the objective of this paper to construct the nonlinear second-order evolution equations

ψt + F(x, y, t, ψ,ψ∗, ψi, ψ∗i , ψij , ψ
∗
ij ) = 0 i, j ∈ {x, y} (1.1)

invariant under the Galilei, Galilei-similitude and Schrödinger groups. In (1.1),ψ(x, y, t)
is a complex function, the star denotes complex conjugation, the subscripts denote spatial
derivatives andF is a complex function of the indicated variables. In particular, the linear
Schr̈odinger equation for a free particle

iψt +1ψ = 0 (1.2)

where1 is the Laplace operator in two-dimensional Euclidean space, is contained in the set of
equations (1.1). It is easy to show that (1.2) admits a nine-dimensional Schrödinger group and
an infinite-dimensional invariant subgroup reflecting the linearity of the equation (the linear
superposition principle). An additional symmetry corresponds to the homogeneity property
stating that ifψ is a solution to (1.2) then so isαψ , whereα is a complex constant. A similar
problem for Sch(1) is solved in [3] and a new realization of Sch(1) completing the results of
[3] is given in [11]. Fushchich and Cherniha [12] constructed systems of (n + 1)-dimensional
quasilinear second-order evolution equations invariant undersch(n). They first made an ansatz
about the form of the equation as a reasonable generalization of a linear equation and then
imposed invariance.

The organization of this paper is as follows. In section 2, as a first step towards classifying
Schr̈odinger invariant equations, we classify all possible inequivalent realizations of the Galilei
g(2, 1), Galilei-similitudesg(2, 1)and Schr̈odingersch(2)Lie algebras in terms of vector fields



Nonlinear evolution equations in 3D spacetime 979

under the action of local diffeomorphisms of the spaceR3×C. In section 3, we obtain second-
order differential invariants of the realized vector fields and hence second-ordersch(2) invariant
differential equations. We also identifysch(2) invariant equations satisfying the homogeneity
condition. We conclude the paper with some remarks and a summary of the results obtained.
Finally, let us emphasize that throughout the paper invariance under a symmetry group will
be in the sense that the equation is annihilated by second-order prolongations of the vector
fields on the solution set. Certainly, this invariance requirement is more restricted than the case
imposed for relativistic equations [1, 2]. In the present paper we shall not take into account
the infinite-dimensional Lie group reflecting superposition principle of all linear differential
equations.

2. Realizations of the Lie algebras by vector fields

2.1. The Schr̈odinger group Sch(2) and its Lie algebra

The Schr̈odinger group Sch(2) is a nine-parameter local group of transformations of the space
R3× C. It is a Lie group isomorphic to

H2 B {SL(2,R)⊗ SO(2)} (2.1)

whereB denotes a semi-direct product and SL(2,R), SO(2) and H2 are the special linear
group, rotation group in the plane and Heisenberg group, respectively. It is also a subgroup of
the conformal group O(4,2) of a (2 + 1)-dimensional Minkowski space M(2,1) which leaves
the Hamilton–Jacobi equation in two space dimensions invariant [2]. The Schrödinger group
appears to be a symmetry group of a variety of physically significant equations. Indeed, we
have already mentioned that (1.2) is invariant under Sch(2). It is isomorphic to the symmetry
group of the two-dimensional heat equation. It is also a symmetry group of the two-dimensional
Navier–Stokes equations in the case when a linear homogeneous transformation law is imposed
on the pressure.

A recent study of finite-dimensional non-relativistic conformal groups is given in [13].
The corresponding Lie algebra has a basis spanned by two space translationsP1, P2, two

Galilei boostsB1, B2, the translation of the phaseM, the time translationT , the dilationD,
the rotationJ and conformal transformationsC. This means that we are dealing with a nine-
dimensional Lie algebrasch(2) which can be written as a semi-direct sum reflecting the Levi
decomposition

sch(2) = h2�{sl(2,R)⊕ so(2)}
∼ {P1, P2, B1, B2,M}�{T ,C,D, J }

(2.2)

with non-zero commutation relations

[P1, B1] = M/2 [P2, B2] = M/2
[J, B2] = −B1 [J, P2] = −P1

[J, B1] = B2 [J, P1] = P2

[T ,Bj ] = Pj [D,Bj ] = Bj j = 1, 2

[D,Pj ] = −Pj [C,Pj ] = −Bj j = 1, 2

[T ,D] = 2T [T ,C] = D [D,C] = 2C.

(2.3)

In (2.2),h2 ∼ {P1, P2, B1, B2,M} is the Heisenberg algebra with centreM. The subalgebra

{P1, P2, T , B1, B2, J,M}
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corresponds to the extended Galilei algebra, and the subalgebra

{D,P1, P2, T , B1, B2, J,M}
to the extended Galilei-similitude algebra. Let us remark that actually different Levi
decompositions ofsch(2) exist [14].

The action of the symmetry group on the space (x, y, t, ψ,ψ∗) is obtained by integrating
the vector fields of (2.2) which is referred to as exponentiation of the vector fields.

2.2. Realizations of Galilei, Galilei-similitude and Schrödinger algebras by vector fields

We classify realizations ofg(2, 1), sg(2, 1) andsch(2) in terms of vector fields of the form

v = ξ∂x + η∂y + τ∂t + σ∂ψ + σ ∗∂ψ∗ (2.4)

whereξ, η, τ, σ, σ ∗ are functions ofx, y, t, ψ,ψ∗ with ξ, η, τ ∈ R, andσ, σ ∗ ∈ C, under
local diffeomorphisms of the spaceR3× C parametrized by the variables (x, y, t, R, φ) with
spacetime coordinatesx, y, t and the wavefunctionψ = R eiφ . Two realizations will be
equivalent if the corresponding vector fields can be transformed into each other by arbitrary
smooth invertible changes of the independent and dependent variables:

x̃ = X(x, y, t, R, φ) ỹ = Y (x, y, t, R, φ) t̃ = T (x, y, t, R, φ)
R̃ = 9(x, y, t, R, φ) φ̃ = 8(x, y, t, R, φ). (2.5)

2.2.1. The extended Galilei algebra.We start from the four-dimensional Abelian algebra
{P1, P2, T ,M}. We can immediately rectify these vector fields (see [15, 16] for the vector field
rectification theorem) up to the diffeomorphisms as

A4 : {P1 = ∂x, P2 = ∂y, T = ∂t ,M = ∂φ}. (2.6)

A4 generates spacetime translations and translation of the phase of the wavefunction.
Obviously, these vector fields remain invariant under

x̃ = x + g(R) ỹ = y + h(R) t̃ = t + f (R) (2.7a)

φ̃ = φ +8(R) R̃ = ρ(R) (2.7b)

wheref, g, h,8 andρ are arbitrary functions ofR. Let us mention that the standard vector-
field realizations in (2 + 1)-dimensional spacetime can be found in [17]. If the Galilei boost
B1 having the form (2.4) is subjected to the commutation relations involvingB1 and elements
of the already realized algebraA4 and is further simplified by (2.7), one finds precisely two
inequivalent types of realizations ofB1:

B
(1)
1 = t∂x + f2(R)∂y + f3(R)∂t + x/2∂φ (2.8a)

B
(2)
1 = t∂x +R∂R + x/2∂φ. (2.8b)

Next we realizeB2 written in the form (2.4). Imposing commutation relations and simplifying
by transformations leaving the algebra{A4, B

(j)

1 , j = 1, 2} invariant it follows thatB1 can be
further extended and we have

B
(1)
1 = t∂x + f2(R)∂y + x/2∂φ (2.9a)

B
(1)
2 = f2(R)∂x + (t + g2(R))∂y + y/2∂φ (2.9b)

and

B
(2)
1 = t∂x +R∂R + x/2∂φ (2.9c)

B
(2)
2 = t∂y +µR∂R + y/2∂φ (2.9d)
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whereµ is a constant. Proceeding as above, we see that the extension of{A4, B
(2)
1 , B

(2)
2 } to

rotations is not possible. However, for (2.9a) and (2.9b) we find

J = y∂x − x∂y + j3(R)∂t + j4(R)∂R + j5(R)∂φ (2.10)

with f2 andg2 related by

4f2f
′
2 + g2g

′
2 = 0

andj3 = 2f2, j4, j5 arbitrary. Consequently, we obtain a single realization of the Galilei
algebra with infinitesimal generators (2.6), (2.9a) and (2.9b) and (2.10) depending on three
arbitrary functions.

2.2.2. The extended Galilei-similitude algebra.Let us now add a dilation generatorD of the
form (2.4). The commutation relations between{P1, P2, B1, B2, T ,M,D} restrictD to

D = x∂x + y∂y + 2t∂t + d4(R)∂R + d5(R)∂φ. (2.11)

CommutingJ with D yields

j4(R) = ad4(R) and j5(R) = ad5(R) a = const

and forcesB(1)1 , B(1)2 andJ to be

B
(1)
1 = t∂x + x/2∂φ B

(1)
2 = t∂y + y/2∂φ

J = y∂x − x∂y + a(d4(R)∂R + d5(R)∂φ).

The form ofD is further restricted by transformations leaving the algebra

{P1, P2, B1, B2,M, T , J }
invariant. Finally, we obtain two inequivalent realizations of the Galilei-similitude algebra
which depend on one arbitrary function

sg1(d0) :


B1 = t∂x + x/2∂φ B2 = t∂y + y/2∂φ

J = y∂x − x∂y − aR/2∂R + ad0(R)∂φ

D = x∂x + y∂y + 2t∂t − R/2∂R + d0(R)∂φ

(2.12a)

sg2(δ0) :


B1 = t∂x + x/2∂φ B2 = t∂y + y/2∂φ

J = y∂x − x∂y + aδ0(R)∂φ

D = x∂x + y∂y + 2t∂t + δ0(R)∂φ.

(2.12b)

2.2.3. The Schr̈odinger algebra. The above obtained realizations ofsg(2, 1) can be further
extended tosch(2) by adding the non-relativistic conformal generatorC. We start from
(2.12) and repeat the routine steps of imposing commutation relations and simplifying by
transformations leaving thesg(2, 1) algebra realizations unchanged. Omitting the lengthy
details we present the final results only:

sch1(f ;α, β) :



J = y∂x − x∂y
D = x∂x + y∂y + 2t∂t − R

2
∂R + f (R)∂φ

C = xt∂x + yt∂y + t2∂t +

(
− tR

2
+ αR−3

)
∂R

+((x2 + y2)/4 + tf (R) +R−4(β − 2αf (R)))∂φ

(2.13a)
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sch2(g) :


J = y∂x − x∂y − aR

2
∂R + ag(R)∂φ

D = x∂x + y∂y + 2t∂t − R
2
∂R + g(R)∂φ

C = xt∂x + yt∂y + t2∂t − tR
2
∂R + ((x2 + y2)/4 + tg(R))∂φ

(2.13b)

sch3(h) :


J = y∂x − x∂y + ah(R)∂φ

D = x∂x + y∂y + 2t∂t + h(R)∂φ

C = xt∂x + yt∂y + t2∂t + ((x2 + y2)/4 + th(R))∂φ.

(2.13c)

We observe that all of the above realizations characterize a class of algebras corresponding to
an arbitrary function and constants and generate fibre-preserving transformations. Using the
relations

R∂R = ψ∂ψ +ψ∗∂ψ∗ ∂φ = i(ψ∂ψ − ψ∗∂ψ∗)
we can express all the generators involvingR andφ (modulus and phase of the wave) in terms
of the original variablesx, y, t, ψ,ψ∗.

3. Differential invariants and invariant equations

In this section we obtain second-order differential invariants under the particular cases of
the realizations obtained in section 2.2 and hence invariant differential equations admitting
Schr̈odinger symmetry.

A brief review of the differential invariants and the fundamental theorem that is essential
for constructing invariant equations was outlined in [2]. For a full discussion of the relevant
definitions and theorems with proofs we refer to the contemporary literature [15, 16, 18, 19]. In
order to make the present paper self-contained we recall some definitions which will be needed
in the derivation of differential invariants. Let G be a local Lie group of transformations acting
on the space of independent and dependent variablesX ⊗ U and G(n) = pr(n)G denote the
prolonged group action on the jet spaceJ n whose coordinates are denoted by (x, u(n)). The
space of infinitesimal generators of G, i.e. its Lie algebra will be denoted byg with associated
prolongationg(n) = pr(n)g. Recall that an absolute differential invariant of orderr 6 n is a
scalar functionI : J n→ R which satisfies

I (g(n).(x, u(n))) = I (x, u(n)) (3.1)

for all g(n) ∈ G(n) and all(x, u(n)) ∈ J n. Since any functionF(I1, I2, . . . , Ir ) of a collection
of differential invariants{I1, I2, . . . , Ir} is also a differential invariant, we classify differential
invariants up to functional independence. A complete set of functionally independent
differential invariants will be called fundamental invariants. Once we have found such a
complete set, any other differential invariant can be expressed as a function of these invariants.
Let v be a one-parameter group of transformations acting onX⊗U , the associatednth order
prolonged vector field pr(n)v is the vector field on the jet spaceJ n. The infinitesimal version
of (3.1) can be written as

pr(n)v(I ) = 0 (3.2)

for every prolonged vector field pr(n)v. This implies that if{vi}, i = 1, 2, . . . , r form a basis for
the symmetry algebra then the differential invariants are found by solving an overdetermined
system of homogeneous, first-order linear PDEs of (3.2) withv replaced by the basis elements
vi . A solution to this system is a differential function depending onnth order jet variables.
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One way to proceed towards finding differential invariants is to first solve the system forv1

which amounts to obtaining the differential invariants ofv1 and next to re-express the remaining
vector fields in terms of these invariants as coordinates and to find invariants ofr − 1 vector
fields, namely to solve inductively the rest of the system containingr − 1 equations using the
same procedure. The general formula for thenth prolongation of vector fields is given, for
example, in [15]. Since we concentrate on second-order differential equations here, we need
expressions for the second prolongation pr(2)vi for each infinitesimal generatorvi . The most
tedious part of the present paper, i.e. the calculation of the explicit expressions for pr(2)vi , has
been eliminated using MATHEMATICA.

The general form of an invariant evolution equation will be

ψt + F(I1, . . . , Ik) = 0

where{I1, . . . , Ik} are fundamental invariants. The functionF will be obtained as a solution
to the PDEs

pr(2)vi (ψt + F) = 0 wheneverψt = −F
for every vector fieldvi in the basis andF hasa priori the form in (1.1). In other words, each
element chosen from the realized algebra provides a first-order linear PDE for the functionF .
Solving this overdetermined system we expressF in terms of fundamental invariants whenever
possible and hence construct invariant equations. In the following we apply this scheme to
obtain the Galilei, Galilei-similitude and Schrödinger invariant equations, respectively.

3.1. The extended Galilei invariant equations

Consider the standard realization{
{A4}, B1 = t∂x +

ix

2
(ψ∂ψ − ψ∗∂ψ∗), B2 = t∂y +

iy

2
(ψ∂ψ − ψ∗∂ψ∗), J = y∂x − x∂y

}
.

(3.3)

Invariance underA4 will restrict the form of (1.1) to

ψt +ψxx + F(Ij )ψ = 0 j = 1, 11 (3.4)

I1 = ψψ∗ = |ψ |2
I2 = ψ∗ψx I3 = ψψ∗x = I ∗2
I4 = ψ∗ψxx I5 = ψψ∗xx = I ∗4
I6 = ψ∗ψy I7 = ψψ∗y = I ∗6
I8 = ψ∗ψyy I9 = ψψ∗yy = I ∗8
I10 = ψ∗ψxy I11 = ψψ∗xy = I ∗10.

A further requirement of invariance underB1 reduces eleven invariants to ten and (3.4) to

iψt +ψxx + F(Jk)ψ = 0 k = 1, 10 (3.5)

J1 = I1 J2 = I2 + I3 = (|ψ |2)x
J3 = I 2

3 − I1I5 J4 = I 2
2 − I1I4 = J ∗3

J5 = I1I10 + I6I3 Jµ = Iµ µ = 6, 7, 8, 9

J10 = I1I11 + I6I3 = J ∗5 .
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Imposing invariance underB2 will reduce ten invariants to nine and (3.5) to

iψt +1ψ + F(Kλ)ψ = 0 λ = 1, 9 (3.6)

Kσ = Jσ σ = 1, 2, 3, 4

K5 = J5 + J10 K6 = J6 + J7 = (|ψ |2)y
K7 = J 2

6 − J1J9 K8 = J 2
7 − J1J9 = K∗7

K9 = J5− J2J6

whereK1,K2,K5 andK6 are real. Finally, if we require (3.6) to be rotationally invariant we
are led to the following extended Galilei-invariant equation

iψt +1ψ + F(L1, L2, L3, L4, L5)ψ = 0 (3.7)

L1 = K1 L2 = K2
2 +K2

6

L3 = K3 +K8 L4 = K4 +K7 = L∗3
L5 = K2

9 −K4K7

whereL1 andL2 are real. In terms of the original variables we have

L1 = |ψ |2
L2 = {(|ψ |2)x}2 + {(|ψ |2)y}2 = (∇|ψ |2)2 = 4|ψ |2(∇|ψ |)2
L3 = ψ2(ψ∗2x +ψ∗2y )− |ψ |2ψ1ψ∗ = ψ2(∇ψ∗)2 − |ψ |2ψ1ψ∗
L4 = L∗3 = ψ∗2(ψ2

x +ψ2
y )− |ψ |2ψ∗1ψ = ψ∗2(∇ψ)2 − |ψ |2ψ∗1ψ

L5 = {|ψ |2(ψ∗ψxy +ψyψ
∗
x )− ψ∗ψy |ψ |2x}2 − ψ∗4(ψ2

x − ψψxx)(ψ2
y − ψψyy).

In particular, (3.7) includes a physically relevant subclass of nonlinear equations of the form

iψt +1ψ + f (|ψ |)ψ = 0.

3.2. The extended Galilei-similitude invariant equations

We now add the requirement that (3.7) be invariant under the dilation generator

D1 = x∂x + y∂y + 2t∂t − 2/k(ψ∂ψ +ψ∗∂ψ∗) k 6= 0

which is equivalent toD of (2.13a) by a simple change of variable withf = 0, and obtain the
invariant equation

iψt +1ψ +Lk/21 F(R1, R2, R3)ψ = 0 (3.8a)

R1 = L3

L
(k+4)/2
1

R2 = L2

L
(k+4)/2
1

R3 = L4

L
(k+4)/2
1

= R∗1 (3.8b)

whereF is an arbitrary complex function. In particular, settingF = −λ = (const) we obtain
the nonlinear Schrödinger equation with power nonlinearity

iψt +1ψ = λ|ψ |kψ. (3.9)

We see that the cubic and quintic Schrödinger equations will belong to the above class of Galilei-
similitude invariant equations. These type of nonlinear generalizations arise in applications
as diverse as nonlinear optics, wave propagation in water, interactions of laser beams with
plasma, turbulence and many others.

When we extend the Galilei invariant equation by

D = x∂x + y∂y + 2t∂t
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we get the invariant equation corresponding to the realizationsg2(0) of (2.12b):

iψt +1ψ +L2F(S1, S2, S3)ψ = 0 (3.10a)

S1 = L1 S2 = L3

L2
S3 = L4

L2
= S∗2 . (3.10b)

3.3. The Schr̈odinger invariant equations

To construct conformally invariant evolution equations we should add the requirement of
conformal invariance generated byC. This will further restrict the form of the arbitrary
functions occurring in the Galilei-similitude invariant equations. Indeed, for the standard
realizationsch1(0; 0, 0) the requirement that equation (3.8a) be invariant under

C = xt∂x + yt∂y + t2∂t + {−2/kt + i(x2 + y2)/4}ψ∂ψ − {2/kt + i(x2 + y2)/4}ψ∗∂ψ∗
leads, after some lengthy calculations, to the invariant equation

iψt +1ψ +Lk/21

[(
1− 2

k

)
R3 +H(61, 62)

]
ψ = 0 (3.11a)

61 = R2 = L−(k+4)/2
1 L2 62 = R1 +R3 = L−(k+4)/2

1 (L3 +L4) (3.11b)

whereH is an arbitrary complex function of two real variables. Fork = 2 equation (3.11)
reduces to

iψt +1ψ +L1H(61, 62)ψ = 0 (3.12a)

61 = L−3
1 L2 62 = L−3

1 (L3 +L4). (3.12b)

Equation (3.12) includes particularly the cubic Schrödinger equation

iψt +1ψ = µ|ψ |2ψ. (3.13)

Using the identity

L2 − (L3 +L4) = |ψ |21|ψ |2
yields

62 = 61− 1|ψ |
2

|ψ |4
and so equation (3.12) can be expressed as

iψt +1ψ +L1H1(�1, �2)ψ = 0 (3.14)

whereH1 is arbitrary and

�1 = (∇|ψ |)2
|ψ |4 �2 = 1|ψ |2

|ψ |4 .
In particular, whenH1 is restricted to be linear in�1,�2, namely

H1 = A�1 +B�2 +C A,B,C ∈ C
then we obtain

iψt +1ψ + |ψ |−2(A(∇|ψ |)2 +B1|ψ |2 +C|ψ |4)ψ = 0

containing the followingsch(2) invariant equations

iψt +1ψ = A(∇|ψ |)
2

|ψ |2 ψ (3.15a)

iψt +1ψ = B1|ψ |
2

|ψ |2 ψ (3.15b)
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and the cubic Schrödinger equation. It is clear that

iψt +1ψ = B1|ψ ||ψ | ψ (3.15c)

belongs to the class (3.14). The nonlinear terms on the right-hand side describe dissipative
and diffusion processes in quantum mechanics. Also, settingH1 = A(�1 − �2) and using
1 ln |ψ | = �2 −�1 we obtain

iψt +1ψ = A(1 ln |ψ |)ψ. (3.15d)

The modular class of nonlinear equations of (3.14) are time reversal invariant, namely invariant
under the transformationst → −t , ψ → ψ∗. Equation (3.15c) was proposed as a stochastic
interpretation of quantum mechanical vacuum dissipative effects [20]. Also, equations (3.15c)
and (3.15d) fall into the class of equations introduced by Sabatier [6] and the DG equations [8].
In particular, these equations were shown to be linearizable for anyA ∈ R [7]. In passing, let
us mention that forA > 1 the logarithmic Schr̈odinger equation (3.15d) admits a solitary wave
solution propagating without deformation. A variety of equations proposed as mathematical
models of quantum theory appear to be special cases of the Schrödinger invariant nonlinear
equation (3.14).

Furthermore, if one specializes the arbitrary functionH1 in (3.12) to be

H = A +B�1/2
1

then equation (3.12) has the form

iψt +1ψ + [A|ψ |2 +B(|ψ |2x + |ψ |2y)1/2]ψ = 0. (3.16)

It is natural to call equation (3.16) the two-dimensional Eckhaus equation. The one-
dimensional Eckhaus equation is defined to be

iψt +ψxx + (A|ψ |4 +B|ψ |2x)ψ = 0

whereA, B are arbitrary complex numbers. For|B|2 = 4A with A real, the above equation
has been shown to be linearizable, namely equivalent to the linear Schrödinger equation and
to have the Painlev́e property [21, 22]. It should be interesting to study the integrability and
linearizability properties of (3.16).

In addition to Schr̈odinger invariance we can construct subsets of (3.12) satisfying the
homogeneity condition. When this is the case we find thatH has the form

H = 61 h

(
61

62

)
. (3.17)

On the other hand, the Galilei-similitude invariant equation (3.10) cannot be extended to
conformal transformations. This implies that there is no equation invariant under the realization
(2.13c). However, notice that the arbitrary function in (3.10) can be specified so that the
equation satisfies homogeneity condition, namely

iψt +1ψ +
L2

L2
1

F(S2, S3)ψ = 0 (3.18)

with S2, S3 as in (3.10). Let us comment that here, as opposed to the one-dimensional case, no
quintic Schr̈odinger equation invariant under the Schrödinger group is obtained. The quintic
Schr̈odinger equation is typical for one space dimension.

Since all of the realizations obtained in section 2 generate fibre-preserving transformations,
namely the coefficients multiplying∂x , ∂y and∂t do not depend onψ,ψ∗, in principle one can
always obtain equations invariant under the less standard groups involving an arbitrary function
of a single real variableψψ∗ by integrating a system of coupled first-order PDEs. However,
with this generality, invariant equations are too complicated and we have not attempted to write
them out here.
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4. Conclusions

The results of this paper can be summarized as follows. In section 2 we performed a classifi-
cation of all possible realizations of the extended Galilei, Galilei-similitude and Schrödinger
algebras in 2 + 1 spacetime dimensions in terms of vector fields under local diffeomorphisms
ofR3×C. The realizations obtained depend on arbitrary functions of a real variableψψ∗ and
constants, and the corresponding group transformations are necessarily fibre preserving.

In section 3 we constructed evolution-type equations invariant under the groups
corresponding to the realized algebras with the arbitrary functions set equal to zero. In other
words, we obtained a variety of second-order equations of the form (1.1) invariant under
the symmetry group of the free Schrödinger equation, omitting the infinite-dimensional Lie
group that reflects the linear superposition principle. Thus, we have shown how general a
Schr̈odinger invariant equation can be. In particular, we obtained a class of equations which
might be candidates for possible generalizations of quantum mechanics for a scalar particle in
(2 + 1)-dimensional spacetime. Such general equations need a careful physical interpretation.

In the present study, as in [3], we obtain rather general invariant equations involving
an arbitrary function of three or two variables (invariants). However, in contrast to the
(1 + 1)-dimensional case, we do not obtain a quintic Schrödinger equation invariant under any
realization of the Schrödinger group. Let us mention that some realizations of [3] do not have
counterparts in the three-dimensional case andvice versa. One thing that is common to both
dimensions is that all realized algebras involve an arbitrary function of a real variable, namely
they characterize a class of algebras and they correspond to fibre-preserving transformations.
The latter property simply means that the transformed independent variables under the action
of the corresponding group will only depend on the old ones, but not on the wavefunction.
When the arbitrary function figuring in the most general Schrödinger invariant equation of the
standard realization is restricted to certain subfamilies we recovered several invariant equations
which fit in the class proposed in [6–8]. Another special case is the two-dimensional analogue
of the integrable Eckhaus equation that was first introduced in [21] and generalized in [22].

The knowledge that the equations are by construction invariant under spacetime symmetry
groups ensures us that we can always apply the symmetry reduction method to find exact
particular solutions called group invariant solutions. For example, a recent study [23] has been
devoted to symmetries and solutions of the vector Schrödinger equation with cubic nonlinearity
in two space dimensions. In order to be able to perform symmetry reduction systematically
we need to know a classification of the subalgebras of the corresponding symmetry algebra
into conjugacy classes, under the action of the symmetry group. The subalgebras of the
Schr̈odinger algebrasch(2) were classified by Burdetet al [14]. In a separate paper we plan
to investigate a classification of symmetry reductions and their solutions for a specific class of
invariant equations such as those of the form (3.15). In particular, we would like to return to
the integrability properties of (3.16).

Acknowledgments

The author would like to thank the referees for their useful comments which improved the
presentation of this paper.

References

[1] Rideau G and Winternitz P 1990J. Math. Phys.311095–105
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